Impact of Covid-19 on Alzheimer Patients: How One Crisis Worsens the Other
Abstract
The coronavirus has caused chaos in the lives of many people in our society, one of which is the disruption of our daily routines. For those with Alzheimer's disease or those who care for someone with Alzheimer's disease, the coronavirus has the potential to be lethal. The COVID-19 epidemic has wreaked havoc on people with Alzheimer's disease (AD) and other dementias. Corona virus illness, which is characterised by severe acute respiratory syndrome, has arisen as a substantial comorbidity. The immediate physical effects of Covid-19 have been widely investigated, but little is known regarding the long-term consequences. The authors investigate the symptoms of Alzheimer's disease and how it worsens COVID-19, as well as the mechanisms at work at all levels, from biological to social. COVID-19's impact on brain function and viral entry pathways into the brain, as well as the factors that lead to COVID-19-related cognitive impairment, were also examined. The researchers looked on the prevalence and mortality of COVID-19 in Alzheimer's patients, as well as the impact of the pandemic on uninfected dementia patients and Alzheimer's disease managementReference
Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer's disease: how one crisis worsens the other. Transl Neurodegener. 2021;10(1):15. https://doi.org/10.1186/s40035-021-00237-2
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. The New England journal of medicine. 2020;382(18):1708-20.
Bender S, Weiss S. Pathogenesis of Murine Coronavirus in the Central Nervous System. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2010;5:336-54. https://doi.org/10.1007/s11481-010-9202-2
Sepúlveda-Loyola W, Rodríguez-Sánchez I, Pérez-Rodríguez P, Ganz F, Torralba R, Oliveira D, et al. Impact of social isolation due to COVID-19 on health in older people: mental and physical effects and recommendations. The journal of nutrition, health & aging. 2020;24(9):938-47. https://doi.org/10.1007/s12603-020-1500-7
Brown EE, Kumar S, Rajji TK, Pollock BG, Mulsant BH. Anticipating and mitigating the impact of the COVID-19 pandemic on Alzheimer's disease and related dementias. The American Journal of Geriatric Psychiatry. 2020;28(7):712-21. https://doi.org/10.1016/j.jagp.2020.04.010
Carriedo A, Cecchini JA, Fernandez-Rio J, Méndez-Giménez A. COVID-19, psychological well-being and physical activity levels in older adults during the nationwide lockdown in Spain. The American Journal of Geriatric Psychiatry. 2020;28(11):1146-55. https://doi.org/10.1016/j.jagp.2020.08.007
Mok VC, Pendlebury S, Wong A, Alladi S, Au L, Bath PM, et al. Tackling challenges in care of Alzheimer's disease and other dementias amid the COVID‐19 pandemic, now and in the future. Alzheimer's & Dementia. 2020;16(11):1571-81. https://doi.org/10.1002/alz.12143
Numbers K, Brodaty H. The effects of the COVID-19 pandemic on people with dementia. Nature Reviews Neurology. 2021;17(2):69-70. https://doi.org/10.1038/s41582-020-00450-z
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA neurology. 2020;77(6):683-90. https://doi.org/10.1001/jamaneurol.2020.1127
Rahman MA, Islam K, Rahman S, Alamin M. Neurobiochemical Cross-talk Between COVID-19 and Alzheimer's Disease. Molecular neurobiology. 2021;58(3):1017-23. https://doi.org/10.1007/s12035-020-02177-w
Fung TS, Liu DX. Human Coronavirus: Host-Pathogen Interaction. Annual review of microbiology. 2019;73:529-57. https://doi.org/10.1146/annurev-micro-020518-115759
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature reviews Microbiology. 2019;17(3):181-92. https://doi.org/10.1038/s41579-018-0118-9
Yu P, Hu B, Shi Z-L, Cui J. Geographical structure of bat SARS-related coronaviruses. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2019;69:224-9. https://doi.org/10.1016/j.meegid.2019.02.001
Lipsitch M, Swerdlow DL, Finelli L. Defining the Epidemiology of Covid-19 — Studies Needed. New England Journal of Medicine. 2020;382(13):1194-6. https://doi.org/10.1056/nejmp2002125
Viboud C, Nelson MI, Tan Y, Holmes EC. Contrasting the epidemiological and evolutionary dynamics of influenza spatial transmission. Philos Trans R Soc Lond B Biol Sci. 2013;368(1614):20120199-. https://doi.org/10.1098/rstb.2012.0199
Soh SE, Cook AR, Chen MIC, Lee VJ, Cutter JL, Chow VTK, et al. Teacher led school-based surveillance can allow accurate tracking of emerging infectious diseases - evidence from serial cross-sectional surveys of febrile respiratory illness during the H1N1 2009 influenza pandemic in Singapore. BMC Infect Dis. 2012;12:336-. https://doi.org/10.1186/1471-2334-12-336
van Gemert C, Hellard M, McBryde ES, Fielding J, Spelman T, Higgins N, et al. Intrahousehold transmission of pandemic (H1N1) 2009 virus, Victoria, Australia. Emerg Infect Dis. 2011;17(9):1599-607. https://doi.org/10.3201/eid1709.101948
Marik PE, Iglesias J, Varon J, Kory P. A scoping review of the pathophysiology of COVID-19. Int J Immunopathol Pharmacol. 2021;35:20587384211048026. https://doi.org/10.1177/20587384211048026
Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS pathogens. 2017;13(11):e1006698. https://doi.org/10.1371/journal.ppat.1006698
Haagmans BL, Al Dhahiry SH, Reusken CB, Raj VS, Galiano M, Myers R, et al. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. The Lancet Infectious diseases. 2014;14(2):140-5. https://doi.org/10.1016/s1473-3099(13)70690-x
Nag VL, Kaur N. Superinfections in COVID-19 Patients: Role of Antimicrobials. Dubai Medical Journal. 2021:81-90. https://doi.org/10.1159/000515067
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory medicine. 2020;8(5):475-81. https://doi.org/10.1016/s2213-2600(20)30079-5
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020;395(10223):497-506. https://doi.org/10.1016/s0140-6736(20)30183-5
Yu N, Li W, Kang Q, Xiong Z, Wang S, Lin X, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. The Lancet Infectious diseases. 2020;20(5):559-64. https://doi.org/10.1016/s1473-3099(20)30176-6
Alimohamadi Y, Sepandi M, Taghdir M, Hosamirudsari H. Determine the most common clinical symptoms in COVID-19 patients: a systematic review and meta-analysis. Journal of preventive medicine and hygiene. 2020;61(3):E304-E12. https://doi.org/10.18502/ijph.v49i7.3574
Li H, Liu S-M, Yu X-H, Tang S-L, Tang C-K. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020;55(5):105951-. https://doi.org/10.1016/j.ijantimicag.2020.105951
Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet (London, England). 2015;386(9997):995-1007. https://doi.org/10.1016/s0140-6736(15)60454-8
Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, et al. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Health. 2020;13(5):667-73. https://doi.org/10.1016/j.jiph.2020.03.019
Wu J, Wu X, Zeng W, Guo D, Fang Z, Chen L, et al. Chest CT Findings in Patients With Coronavirus Disease 2019 and Its Relationship With Clinical Features. Investigative radiology. 2020;55(5):257-61. https://doi.org/10.1097/rli.0000000000000670
Sims AC, Baric RS, Yount B, Burkett SE, Collins PL, Pickles RJ. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. Journal of virology. 2005;79(24):15511-24. https://doi.org/10.1128/jvi.79.24.15511-15524.2005
Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, et al. Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. American journal of respiratory and critical care medicine. 2019;199(12):1517-36.
He L, Ding Y, Zhang Q, Che X, He Y, Shen H, et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol. 2006;210(3):288-97. https://doi.org/10.1002/path.2067
Li C, Chen H, Hu L, Xing Y, Sasaki T, Villosis MF, et al. Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with Fzd2. BMC molecular biology. 2008;9:11. https://doi.org/10.1186/1471-2199-9-11
Qian Z, Travanty EA, Oko L, Edeen K, Berglund A, Wang J, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. American journal of respiratory cell and molecular biology. 2013;48(6):742-8. https://doi.org/10.1165/rcmb.2012-0339oc
Bouadma L, Wiedemann A, Patrier J, Surénaud M, Wicky P-H, Foucat E, et al. Immune Alterations in a Patient with SARS-CoV-2-Related Acute Respiratory Distress Syndrome. J Clin Immunol. 2020;40(8):1082-92. https://doi.org/10.1007/s10875-020-00839-x
Mao P, Wu S, Li J, Fu W, He W, Liu X, et al. Human alveolar epithelial type II cells in primary culture. Physiol Rep. 2015;3(2):e12288. https://doi.org/10.14814/phy2.12288
Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. Jama. 2020;323(13):1239-42. https://doi.org/10.1001/jama.2020.2648
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-20. https://doi.org/10.1038/s41586-020-2180-5
Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH, 3rd, et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell. 2020;182(2):429-46.e14.
Gammone MA, D'Orazio N. Review: Obesity and COVID-19: A Detrimental Intersection. Front Endocrinol (Lausanne). 2021;12:652639-. https://doi.org/10.3389/fendo.2021.652639
Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of virology. 2011;85(9):4122-34. https://doi.org/10.1128/jvi.02232-10
Miyahara R, Tsuchiya N, Yasuda I, Ko YK, Furuse Y, Sando E, et al. Familial Clusters of Coronavirus Disease in 10 Prefectures, Japan, February-May 2020. Emerg Infect Dis. 2021;27(3):915-8. https://doi.org/10.3201/eid2703.203882
Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. The New England journal of medicine. 2020;382(17):1653-9. https://doi.org/10.1056/nejmsr2005760
Zhang Q, Wadgaonkar P, Xu L, Thakur C, Fu Y, Bi Z, et al. Environmentally-induced mdig contributes to the severity of COVID-19 through fostering expression of SARS-CoV-2 receptor NRPs and glycan metabolism. Theranostics. 2021;11(16):7970-83. https://doi.org/10.7150/thno.62138
Yi H, Wang J, Wang J, Lu Y, Zhang Y, Peng R, et al. The Emergence and Spread of Novel SARS-CoV-2 Variants. Front Public Health. 2021;9:696664-. https://doi.org/10.3389/fpubh.2021.696664
Mayi BS, Leibowitz JA, Woods AT, Ammon KA, Liu AE, Raja A. The role of Neuropilin-1 in COVID-19. PLoS pathogens. 2021;17(1):e1009153. https://doi.org/10.1371/journal.ppat.1009153
Marik PE, Iglesias J, Varon J, Kory P. A scoping review of the pathophysiology of COVID-19. Int J Immunopathol Pharmacol. 2021;35:20587384211048026-. https://doi.org/10.1177/20587384211048026
Bowie AG, Unterholzner L. Viral evasion and subversion of pattern-recognition receptor signalling. Nature reviews Immunology. 2008;8(12):911-22. https://doi.org/10.1038/nri2436
Poland GA, Ovsyannikova IG, Kennedy RB. SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet (London, England). 2020;396(10262):1595-606. https://doi.org/10.1016/s0140-6736(20)32137-1
Chen Y, Zuiani A, Fischinger S, Mullur J, Atyeo C, Travers M, et al. Quick COVID-19 Healers Sustain Anti-SARS-CoV-2 Antibody Production. Cell. 2020;183(6):1496-507.e16. https://doi.org/10.1016/j.cell.2020.10.051
Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181(5):1036-45.e9. https://doi.org/10.1016/j.cell.2020.04.026
Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell host & microbe. 2020;27(6):992-1000.e3. https://doi.org/10.1016/j.chom.2020.04.009
Bertoletti A, Le Bert N, Qui M, Tan AT. SARS-CoV-2-specific T cells in infection and vaccination. Cell Mol Immunol. 2021;18(10):2307-12. https://doi.org/10.1038/s41423-021-00743-3
Li Y, Chen M, Cao H, Zhu Y, Zheng J, Zhou H. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response. Microbes and infection. 2013;15(2):88-95. https://doi.org/10.1016/j.micinf.2012.10.008
Gavriatopoulou M, Korompoki E, Fotiou D, Ntanasis-Stathopoulos I, Psaltopoulou T, Kastritis E, et al. Organ-specific manifestations of COVID-19 infection. Clinical and experimental medicine. 2020;20(4):493-506. https://doi.org/10.1007/s10238-020-00648-x
Michalakis K, Ilias I. COVID-19 and hyperglycemia/diabetes. World J Diabetes. 2021;12(5):642-50. https://doi.org/10.4239/wjd.v12.i5.642
Reiter RJ, Sharma R, Ma Q, Dominquez-Rodriguez A, Marik PE, Abreu-Gonzalez P. Melatonin Inhibits COVID-19-induced Cytokine Storm by Reversing Aerobic Glycolysis in Immune Cells: A Mechanistic Analysis. Medicine in drug discovery. 2020;6:100044-. https://doi.org/10.1016/j.medidd.2020.100044
Li Z, Wu J, Zhou J, Yuan B, Chen J, Wu W, et al. A Vimentin-Targeting Oral Compound with Host-Directed Antiviral and Anti-Inflammatory Actions Addresses Multiple Features of COVID-19 and Related Diseases. mBio. 2021;12(5):e0254221-e. https://doi.org/10.1128/mbio.02542-21
Rauti R, Shahoha M, Leichtmann-Bardoogo Y, Nasser R, Paz E, Tamir R, et al. Effect of SARS-CoV-2 proteins on vascular permeability. Elife. 2021;10:e69314. https://doi.org/10.7554/elife.69314
Terpos E, Gavriatopoulou M, Ntanasis-Stathopoulos I, Briasoulis A, Gumeni S, Malandrakis P, et al. The neutralizing antibody response post COVID-19 vaccination in patients with myeloma is highly dependent on the type of anti-myeloma treatment. Blood Cancer J. 2021;11(8):138-. https://doi.org/10.1038/s41408-021-00530-3
Zhou X, Ye Q. Cellular Immune Response to COVID-19 and Potential Immune Modulators. Front Immunol. 2021;12:646333-. https://doi.org/10.3389/fimmu.2021.646333
Fang X-Z, Wang Y-X, Xu J-Q, He Y-J, Peng Z-K, Shang Y. Immunothrombosis in Acute Respiratory Dysfunction of COVID-19. Front Immunol. 2021;12:651545-. https://doi.org/10.3389/fimmu.2021.651545
Gimeno-Miguel A, Bliek-Bueno K, Poblador-Plou B, Carmona-Pírez J, Poncel-Falcó A, González-Rubio F, et al. Chronic diseases associated with increased likelihood of hospitalization and mortality in 68,913 COVID-19 confirmed cases in Spain: A population-based cohort study. PloS one. 2021;16(11):e0259822-e. https://doi.org/10.1371/journal.pone.0259822
Matias-Guiu JA, Pytel V, Matías-Guiu J. Death Rate Due to COVID-19 in Alzheimer's Disease and Frontotemporal Dementia. Journal of Alzheimer's disease : JAD. 2020;78(2):537-41. https://doi.org/10.3233/jad-200940
Xu J, Xiao W, Liang X, Shi L, Zhang P, Wang Y, et al. A meta-analysis on the risk factors adjusted association between cardiovascular disease and COVID-19 severity2021. https://doi.org/10.21203/rs.3.rs-523415/v1
Hashim MJ, Alsuwaidi AR, Khan G. Population Risk Factors for COVID-19 Mortality in 93 Countries. Journal of epidemiology and global health. 2020;10(3):204-8. https://doi.org/10.2991/jegh.k.200721.001
Trevisan K, Cristina-Pereira R, Silva-Amaral D, Aversi-Ferreira TA. Theories of Aging and the Prevalence of Alzheimer's Disease. BioMed research international. 2019;2019:9171424-. https://doi.org/10.1155/2019/9171424
Chen Y, Klein SL, Garibaldi BT, Li H, Wu C, Osevala NM, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing research reviews. 2021;65:101205. https://doi.org/10.1016/j.arr.2020.101205
Moothedath M, Muhamood M, Bhosale YS, Bhatia A, Gupta P, Reddy MRH, et al. COVID and Animal Trials: A Systematic Review. J Pharm Bioallied Sci. 2021;13(Suppl 1):S31-S5. https://doi.org/10.4103/jpbs.jpbs_749_20
Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. Jama. 2020;323(18):1775-6. https://doi.org/10.1001/jama.2020.4683
Xia X, Jiang Q, McDermott J, Han JJ. Aging and Alzheimer's disease: Comparison and associations from molecular to system level. Aging cell. 2018;17(5):e12802. https://doi.org/10.1111/acel.12802
Giri S, Chenn LM, Romero-Ortuno R. Nursing homes during the COVID-19 pandemic: a scoping review of challenges and responses. Eur Geriatr Med. 2021;12(6):1127-36. https://doi.org/10.1007/s41999-021-00531-2
Kobayashi R, Hayashi H, Kawakatsu S, Morioka D, Aso S, Kimura M, et al. Recognition of the coronavirus disease 2019 pandemic and face mask wearing in patients with Alzheimer's disease: an investigation at a medical centre for dementia in Japan. Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society. 2020;20(6):923-5. https://doi.org/10.1111/psyg.12617
Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer's disease: how one crisis worsens the other. Transl Neurodegener. 2021;10(1):15-. https://doi.org/10.1186/s40035-021-00237-2
Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer's disease and other neurological disorders. The Lancet Neurology. 2011;10(3):241-52. https://doi.org/10.1016/s1474-4422(10)70325-2
Kulminski AM, Loika Y, Culminskaya I, Huang J, Arbeev KG, Bagley O, et al. Independent associations of TOMM40 and APOE variants with body mass index. Aging cell. 2019;18(1):e12869. https://doi.org/10.1111/acel.12869
Kulminski AM, Raghavachari N, Arbeev KG, Culminskaya I, Arbeeva L, Wu D, et al. Protective role of the apolipoprotein E2 allele in age-related disease traits and survival: evidence from the Long Life Family Study. Biogerontology. 2016;17(5-6):893-905. https://doi.org/10.1007/s10522-016-9659-3
Green KN, LaFerla FM. Linking calcium to Abeta and Alzheimer's disease. Neuron. 2008;59(2):190-4.
Green KN, Boyle JP, Peers C. Hypoxia potentiates exocytosis and Ca2+ channels in PC12 cells via increased amyloid beta peptide formation and reactive oxygen species generation. J Physiol. 2002;541(Pt 3):1013-23. https://doi.org/10.1113/jphysiol.2002.017582
Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends in neurosciences. 2008;31(9):454-63. https://doi.org/10.1016/j.tins.2008.06.005
Siddiqui R, Mungroo MR, Khan NA. SARS-CoV-2 invasion of the central nervous: a brief review. Hosp Pract (1995). 2021;49(3):157-63. https://doi.org/10.1080/21548331.2021.1887677
Chen X, Cao R, Zhong W. Host Calcium Channels and Pumps in Viral Infections. Cells. 2019;9(1):94. https://doi.org/10.3390/cells9010094
Lukiw WJ. SARS-CoV-2, the Angiotensin Converting Enzyme 2 (ACE2) Receptor and Alzheimer's disease. J Alzheimers Dis Parkinsonism. 2021;11(4):520.
Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell discovery. 2020;6:11. https://doi.org/10.1038/s41421-020-0147-1
Jiang T, Gao L, Lu J, Zhang YD. ACE2-Ang-(1-7)-Mas Axis in Brain: A Potential Target for Prevention and Treatment of Ischemic Stroke. Current neuropharmacology. 2013;11(2):209-17. https://doi.org/10.2174/1570159x11311020007
Motaghinejad M, Gholami M. Possible Neurological and Mental Outcomes of COVID-19 Infection: A Hypothetical Role of ACE-2MasBDNF Signaling Pathway. International journal of preventive medicine. 2020;11:84-.
Kehoe PG, Wong S, Al Mulhim N, Palmer LE, Miners JS. Angiotensin-converting enzyme 2 is reduced in Alzheimer's disease in association with increasing amyloid-β and tau pathology. Alzheimer's research & therapy. 2016;8(1):50. https://doi.org/10.1186/s13195-016-0217-7
Chapel HM, Esiri MM, Wilcock GK. Immunoglobulin and other proteins in the cerebrospinal fluid of patients with Alzheimer's disease. J Clin Pathol. 1984;37(6):697-9. https://doi.org/10.1136/jcp.37.6.697
Karthivashan G, Park SY, Kweon MH, Kim J, Haque ME, Cho DY, et al. Ameliorative potential of desalted Salicornia europaea L. extract in multifaceted Alzheimer's-like scopolamine-induced amnesic mice model. Scientific reports. 2018;8(1):7174. https://doi.org/10.1038/s41598-018-25381-0
Chowdhury P, Pathak P. Neuroprotective immunity by essential nutrient “Choline” for the prevention of SARS CoV2 infections: An in silico study by molecular dynamics approach. Chemical physics letters. 2020;761:138057. https://doi.org/10.1016/j.cplett.2020.138057
Cameron B, Landreth GE. Inflammation, microglia, and Alzheimer's disease. Neurobiology of disease. 2010;37(3):503-9. https://doi.org/10.1016/j.nbd.2009.10.006
Kim YS, Lee KJ, Kim H. Serum tumour necrosis factor-α and interleukin-6 levels in Alzheimer's disease and mild cognitive impairment. Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society. 2017;17(4):224-30. https://doi.org/10.1111/psyg.12218
Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, et al. Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) Is Closely Correlated With Drastically Elevated Interleukin 6 Level in Critically Ill Patients With Coronavirus Disease 2019. Clin Infect Dis. 2020;71(8):1937-42. https://doi.org/10.1093/cid/ciaa449
Liyanage SI, Santos C, Weaver DF. The hidden variables problem in Alzheimer's disease clinical trial design. Alzheimers Dement (N Y). 2018;4:628-35.
Bedock D, Bel Lassen P, Mathian A, Moreau P, Couffignal J, Ciangura C, et al. Prevalence and severity of malnutrition in hospitalized COVID-19 patients. Clinical Nutrition ESPEN. 2020;40:214-9. https://doi.org/10.1016/j.clnesp.2020.09.018
Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer’s disease: how one crisis worsens the other. Transl Neurodegener. 2021;10. https://doi.org/10.1186/s40035-021-00237-2
Abate SM, Chekole YA, Estifanos MB, Abate KH, Kabthymer RH. Prevalence and outcomes of malnutrition among hospitalized COVID-19 patients: A systematic review and meta-analysis. Clinical Nutrition ESPEN. 2021;43:174-83. https://doi.org/10.1016/j.clnesp.2021.03.002
Zhang T, Liu N, Cao H, Wei W, Ma L, Li H. Different Doses of Pharmacological Treatments for Mild to Moderate Alzheimer's Disease: A Bayesian Network Meta-Analysis. Frontiers in pharmacology. 2020;11:778. https://doi.org/10.3389/fphar.2020.00778
Defilippi J, Crismon L. Drug Interactions with Cholinesterase Inhibitors. Drugs & aging. 2003;20:437-44. https://doi.org/10.2165/00002512-200320060-00003
Jia J, Xu J, Liu J, Wang Y, Wang Y, Cao Y, et al. Comprehensive Management of Daily Living Activities, behavioral and Psychological Symptoms, and Cognitive Function in Patients with Alzheimer's Disease: A Chinese Consensus on the Comprehensive Management of Alzheimer's Disease. Neurosci Bull. 2021;37(7):1025-38. https://doi.org/10.1007/s12264-021-00701-z
Zhou Y, Chi J, Lv W, Wang Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes/metabolism research and reviews. 2021;37(2):e3377. https://doi.org/10.1002/dmrr.3377
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (London, England). 2020;395(10229):1054-62. https://doi.org/10.1016/s0140-6736(20)30566-3
Holman N, Knighton P, Kar P, O'Keefe J, Curley M, Weaver A, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. The lancet Diabetes & endocrinology. 2020;8(10):823-33. https://doi.org/10.1016/s2213-8587(20)30271-0
Riordan P, Stika M, Goldberg J, Drzewiecki M. COVID-19 and clinical neuropsychology: A review of neuropsychological literature on acute and chronic pulmonary disease. The Clinical neuropsychologist. 2020;34(7-8):1480-97. https://doi.org/10.1080/13854046.2020.1810325
Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. The lancet Psychiatry. 2020;7(7):611-27. https://doi.org/10.1016/s2215-0366(20)30203-0
Santana AV, Fontana AD, Pitta F. Pulmonary rehabilitation after COVID-19. J Bras Pneumol. 2021;47(1):e20210034-e. https://doi.org/10.36416/1806-3756/e20210034
van den Borst B, Peters JB, Brink M, Schoon Y, Bleeker-Rovers CP, Schers H, et al. Comprehensive Health Assessment 3 Months After Recovery From Acute Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. 2021;73(5):e1089-e98. https://doi.org/10.1093/cid/ciaa1750
Alemanno F, Houdayer E, Parma A, Spina A, Del Forno A, Scatolini A, et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PloS one. 2021;16(2):e0246590. https://doi.org/10.1371/journal.pone.0246590
Satarker S, Nampoothiri M. Involvement of the nervous system in COVID-19: The bell should toll in the brain. Life sciences. 2020;262:118568. https://doi.org/10.1016/j.lfs.2020.118568
Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2020;94:55-8. https://doi.org/10.1016/j.ijid.2020.03.062
Cheraghali F, Tahamtan A, Hosseini SA, Gharib MH, Moradi A, Razavi Nikoo H, et al. Case Report: Detection of SARS-CoV-2 From Cerebrospinal Fluid in a 34-Month-Old Child With Encephalitis. Front Pediatr. 2021;9:565778-. https://doi.org/10.3389/fped.2021.565778
Salman M, Mallah S, Khalid W, Moran L, Abousedu Y, Jassim G. Characteristics of Patients with SARS-CoV-2 Positive Cerebrospinal Fluid: A Systematic Review2021. https://doi.org/10.21203/rs.3.rs-405171/v1
Kremer S, Lersy F, de Sèze J, Ferré JC, Maamar A, Carsin-Nicol B, et al. Brain MRI Findings in Severe COVID-19: A Retrospective Observational Study. Radiology. 2020;297(2):E242-e51. https://doi.org/10.26226/morressier.614222d287a68d83cb5d422d
Lewis A, Frontera J, Placantonakis DG, Galetta S, Balcer L, Melmed KR. Cerebrospinal fluid from COVID-19 patients with olfactory/gustatory dysfunction: A review. Clin Neurol Neurosurg. 2021;207:106760-. https://doi.org/10.1016/j.clineuro.2021.106760
Satarker S, Nampoothiri M. Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2. Archives of medical research. 2020;51(6):482-91. https://doi.org/10.1016/j.arcmed.2020.05.012
O'Leary J, McAndrew J, Shukralla A, Murphy KC. Neuropsychiatric manifestations in a patient with prolonged COVID-19 encephalopathy: case report and literature review. Ir J Psychol Med. 2021:1-4. https://doi.org/10.1017/ipm.2021.67
Abdullahi A, Candan SA, Soysal Tomruk M, Elibol N, Dada O, Truijen S, et al. Is Guillain-Barré Syndrome Associated With COVID-19 Infection? A Systemic Review of the Evidence. Front Neurol. 2021;11:566308-. https://doi.org/10.3389/fneur.2020.566308
Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain-Barré Syndrome Associated with SARS-CoV-2. The New England journal of medicine. 2020;382(26):2574-6. https://doi.org/10.1056/nejmc2009191
Tong JY, Wong A, Zhu D, Fastenberg JH, Tham T. The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2020;163(1):3-11. https://doi.org/10.1177/0194599820926473
Vaira LA, Hopkins C, Petrocelli M, Lechien JR, Chiesa-Estomba CM, Salzano G, et al. Smell and taste recovery in coronavirus disease 2019 patients: a 60-day objective and prospective study. J Laryngol Otol. 2020;134(8):703-9. https://doi.org/10.1017/s0022215120001826
Glebov OO. Understanding SARS-CoV-2 endocytosis for COVID-19 drug repurposing. The FEBS journal. 2020;287(17):3664-71. https://doi.org/10.1111/febs.15369
Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell host & microbe. 2013;13(4):379-93. https://doi.org/10.1016/j.chom.2013.03.010
Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature medicine. 2020;26(5):681-7. https://doi.org/10.1038/s41591-020-0868-6
Bryche B, St Albin A, Murri S, Lacôte S, Pulido C, Ar Gouilh M, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain, behavior, and immunity. 2020;89:579-86. https://doi.org/10.1016/j.bbi.2020.06.032
Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168-75. https://doi.org/10.1101/2020.06.04.135012
Laurendon T, Radulesco T, Mugnier J, Gérault M, Chagnaud C, El Ahmadi AA, et al. Bilateral transient olfactory bulb edema during COVID-19-related anosmia. Neurology. 2020;95(5):224-5. https://doi.org/10.1212/wnl.0000000000009850
Bulfamante G, Chiumello D, Canevini MP, Priori A, Mazzanti M, Centanni S, et al. First ultrastructural autoptic findings of SARS -Cov-2 in olfactory pathways and brainstem. Minerva anestesiologica. 2020;86(6):678-9. https://doi.org/10.23736/s0375-9393.20.14772-2
Politi LS, Salsano E, Grimaldi M. Magnetic Resonance Imaging Alteration of the Brain in a Patient With Coronavirus Disease 2019 (COVID-19) and Anosmia. JAMA neurology. 2020;77(8):1028-9. https://doi.org/10.1001/jamaneurol.2020.2125
Kumar AA, Lee SWY, Lock C, Keong NC. Geographical Variations in Host Predisposition to COVID-19 Related Anosmia, Ageusia, and Neurological Syndromes. Front Med (Lausanne). 2021;8:661359-. https://doi.org/10.3389/fmed.2021.661359
Bender SJ, Weiss SR. Pathogenesis of murine coronavirus in the central nervous system. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2010;5(3):336-54. https://doi.org/10.1007/s11481-010-9202-2
Bohmwald K, Galvez N, Rios M, Kalergis A. Neurologic Alterations Due to Respiratory Virus Infections. Frontiers in cellular neuroscience. 2018;12. https://doi.org/10.3389/fncel.2018.00386
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS chemical neuroscience. 2020;11(7):995-8. https://doi.org/10.1021/acschemneuro.0c00122
Yildirim Z, Sahin OS, Yazar S, Bozok Cetintas V. Genetic and epigenetic factors associated with increased severity of Covid-19. Cell Biol Int. 2021;45(6):1158-74. https://doi.org/10.1002/cbin.11572
Hellmuth J, Barnett TA, Asken BM, Kelly JD, Torres L, Stephens ML, et al. Persistent COVID-19-associated neurocognitive symptoms in non-hospitalized patients. Journal of neurovirology. 2021;27(1):191-5. https://doi.org/10.1007/s13365-021-00954-4
Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunology letters. 2020;225:31-2. https://doi.org/10.1016/j.imlet.2020.06.013
Swanson Ii PA, McGavern D. Portals of Viral Entry into the Central Nervous System. 2015. p. 23-47. https://doi.org/10.1201/b19299-3
Sangamesh S, Gosavi S, Shastry S, Johny SM. Hiccups and hyponatremia: Unusual co-presentation in COVID-19. J Family Med Prim Care. 2021;10(2):1040-3. https://doi.org/10.4103/jfmpc.jfmpc_1582_20
Vaona A, Banzi R, Kwag KH, Rigon G, Cereda D, Pecoraro V, et al. E-learning for health professionals. Cochrane Database Syst Rev. 2018;1(1):CD011736-CD. https://doi.org/10.1002/14651858.cd011736.pub2
Sweed D, Abdelsameea E, Khalifa EA, Abdallah H, Moaz H, Moaz I, et al. SARS-CoV-2-associated gastrointestinal and liver diseases: what is known and what is needed to explore. Egypt Liver J. 2021;11(1):64-. https://doi.org/10.1186/s43066-021-00123-6
Patel AK, Mukherjee S, Leifels M, Gautam R, Kaushik H, Sharma S, et al. Mega festivals like MahaKumbh, a largest mass congregation, facilitated the transmission of SARS-CoV-2 to humans and endangered animals via contaminated water. Int J Hyg Environ Health. 2021;237:113836. https://doi.org/10.1016/j.ijheh.2021.113836
Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol. 2021;18(4):269-83. https://doi.org/10.1038/s41575-021-00416-6
Pavli A, Theodoridou M, Maltezou HC. Post-COVID Syndrome: Incidence, Clinical Spectrum, and Challenges for Primary Healthcare Professionals. Archives of medical research. 2021;52(6):575-81. https://doi.org/10.1016/j.arcmed.2021.03.010
Files | ||
Issue | Vol 9 No 3 (2023) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/jppm.v9i3.14191 | |
Keywords | ||
COVID-19 Alzheimer Patients |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |